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and Applied Mechanics. Alma-Ata, 27 May 1981 
V.A. ZHELNOROVICH 

A system of equations is considered that describes a certain class of polarizing 
mediain an electromagnetic field with both the spatial inhomogeneities and the re- 
laxation processes of electrical polarization of the media taken into account. The 
nonlinear and the linearized theories are elucidated within the framework of the 
electrostatic approximation. Solutions are given for the equations considered in 
an electrostatic approximation, in the form of electroelastic waves. Withouttaking 
the relaxation of the electrical polarization into account, electorelastic waves 
were considered in piezoceramic media in /l/ and in ferroelectrics in /2/. 

1. Models of polarizing media in an electromagnetic field, Let a,, ~~(a--= 1,2, 
3) be the bases and variables of the Cartesian coordinate system of the observer in the 
three-dimensional, physical (Euclidean) space V, and 3,, A E" are the bases and variables of 
the coordinate system of the accompanying (Lagrange) space for the continuous medium consid- 
ered in V. Let us define the mass density of the medium p, the finite strain tensor 
&A%,"$ and the velocity vector of the medium v = vaaa by the relationships 

Here gag" are the metric tensor components in the accompanying coordinate system, gafio 
are the metric tensor components of the space of initial states defined on the manifold E", 
and dldt is the symbol of the substantive derivative with respect to time t (for constant 
Lagrange variables E"). 

Let P = Pa3, be the three-dimensional electrical polarization vector of the mediumwhich 
is invariant relative totheselectionofthe inertial coordinate system of the observer /3,4/, 
E = E%a is the electrical field intensity vector,D = D%, theelectrical inducation vector, 
H = H%, the magnetic field intensity vector, and B = B%, the magnetic induction vector. 
Polarizing media for which the magnetization is zero by the condition in the intrinsic basis, 
will be considered below. In this case the vectors D and Hare related to the vectorsE, B, P 

by the equation (c is the speed of light in vacuum) 

D = E + 4nP, H = B + 4x1~ [v, PI (1.2) 

The vectors E and B can be expressed in terms of the scalar and vector potentials bythe 
equalities 

l?=rotA, E=-ggradcp- G-A (1.3) 

Here ajat is the symbol of partial differentiation with respect to time forCOnStantvari- 
ables F. 

Let us consider the class of models ofa polarizing medium in an electromagnetic fields 
described by the system of dynamic equations: 

divD=O, rotH=GGD, rot,?=-_&B, divB=O (l-4) 

&pv,=@'!c,, + Qa + -&- (B&HR - Hh@& _t Dr&SL - E%zD~) 

pT$= - a,q= + T*akaS + na(&r [w Plcc) 

pT+-f&=O, -$-+pdivv=O 
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The symbol a, = a/ax= denotes the partial derivative with respect to the variable pa61 = 
Vz rot v is the vortex velocity vector, e,fi = Vn (aau, + a,v,) are the strain rate tensor compon- 

ents, Qa are components of the external volume force vector acting on the medium, Tis the 
temperature in the equilibrium processes, s is the specific entropy density, a+@ are compon- 
ents of the viscous stress tensor, $" are components of the thermal flux vector, and the 
components of the vector na govern the relaxation process of the electrical polarizationof 
the medium. The components of the tensor P!&,j in equations (1.4) are defined bytherelation- 
ship 

where xv" = axa/agv is the distortion, A0 is a given function of the system of arguments 

xv=, p,, asp,, s, Kc (1.6) 

and K,c are given constant tensors (dKJdt = 0) governing the anisotropy of the medium, for in- 
stance. 

Equations (1.4) and (1.5) can be obtained from the variational equation /3-g/. In this 
case the function A$, is a part of the Lagrangian. The equations being considered here differ 
from /3/ only in that the more general Onsager relationships governing the relaxation term IIa 
are used later. 

The system of equations (1.4) and (1.5) contains the Maxwell equations for the electro- 
magnetic field in a medium, the momentum equations, the equation for electrical polarization 
of the medium, the continuity equation for the mass density of the medium, the entropybalance 
equation, and the equation for the temperature. The energy equation 

in which the volume energy density of the medium e(,) and the energy flux vector components of 
the medium I$~, are defined by the relationships 

(1.8) 

follows from (1.4) and (1.5). 
Components of the viscous stress tensor ~*a?, components of the.thermal flux vector @, 

and the relaxation term na of the equation describing the polarization of the medium should 
be given to close the system of equations (1.4) and (1.5). On the basis of the expressionfor 
the internal entropy production d&dt, which can be given in the Onsager form 

(1.9) 

by definition, the following estimations for the quantities ~*~a, IIG,qa can be taken for ex- 
ample: 

r*aP = +We,, + baPh PA - IW> PI?.) (1.10) 

n= = sap (-& Pp - [CO, Pia) + S=aLegh + m=6agT 

qa = - xafiagT + Tp (-& P, - [co, PIB) 

The coefficients r, b, s, m, q, x in (1.10) can be given in the form of functions of the 
governing parameters of the medium and the field in such a way that the condition d,sldt > 0 
would be satisfied. 

For fixed bodies the relaxation of electrical polarization is ordinarily determined by 
the relaxation term ba - dPaldt. The expression (1.9) postulated here for the internal entropy 
production because of polarization for moving media is based substantially on the generalized 
expression for Ila in the form Ila- d’P?dt= dP”ldt - [o,P]~, where d’ldt is the time deriva- 
tive in a basis that moves and rotates with the particle of the medium. 

Physical specification of the class of models described by equations (1.41, (1.5), (1.9) 
and (1.10) is associated with giving definite form to the functions A,, qa, na, ~*a@. In part- 
icular, cases when the quantities SF are in the function A, in terms of the strain tensor 
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components Ea;i correspond to models of elastic polarizing media. Cases 
xfia are in A, in terms of the mass density of the fluid p correspond to 
polarizing media. For example, if A, = A,(p,s, P,. Kc), then we have for 
tensor Pi(,) in the momentum equations in (1.4) 

PB a(m) = - pu,ufi - p&g - T$ + + (PJIP - Pm,) 

when the quantities 
models of liquid 
the components of the 

(1.11) 

In the electrostatic approximation the system (1.4) becomes 

divD =O, rot E=O, -$!-pdivu=O, &+=+P$,,+ Qa+ +(J'&Sh--EhW'~) (1.12) 

a&l a.4, 
E"f,pa -& &Y&P, 

- = IP, pT+++O, pT $ = -- aaqa -+ -c*afle,g + rIa (-$ P, - [co, PI,) 

The components of the tensor PE,,,,, in (1.12) are defined by (1.5). 
In the electrostatic approximation the components of the electrical intensity vector E 

are expressed in terms of the potential cp by the equation E = -grad 9 consequently an equa- 
tion for the potential 'p 

Acp = 4n div P (1.13) 

can be taken in place of the Maxwell equations in (1.12). 

2. Linearized theory of polarizing media in the electrostatic approximation. 
Let us define the displacement vector of points of the media u = ~9, by the equality u = r - 

r0 in which r is a radius-vector of points of the medium at the current time, and r. is a 
radius-vector of points ofthemedium In the initial state. We shall furthermore consider that 
the Cartesian coordinate system of the observer and the accompanying coordinate system agree 
at the initial time t = tO. Let us examine the motion of the medium for which the gradient of 
the displacement vector and the gradient of the polarization vector of the medium are small, 
while the components of the polarization vector P, the temperature T, the entropy S, the 
mass density of the medium p and the components of the electrical induction vector E vary 
little relative to the equilibrium (constant) values P,, T,, s,,, pa, E,. Assuming that 

P = Pea + pa, s = so + sir p = pO + pl, Ea = Eoa + ea (2.1) 

where pa, %, PI, ea are small quantities, considered as first order infinitesimals, the function 
All can be expanded in series in u,p = a,~,, aapP, p~,s~. Limiting ourselves to second orderof 

smallness in such an expansion, we obtain 

(2.2) 

The constant coefficients of the small quantities in formula (2.2) can be expressed in 
terms of the function A0 and the derivatives of A0 evaluated in the initial state. If (2.2) 
for ho is not taken with respect to exact nonlinear theory, then the specific values of the 
coefficients in (2.2) can be associated with the additional assumptions, in particular, with 
respect to the symmetry properties of the medium. If the stresses in the medium are zero in 
the initial state, then Q"B = Q should be inserted in the expansion (2.2). According to the 
definition, the coefficients h,a, p in (2.2) always possess the following symmetry properties 

h~i3~e = hhea8, same = ,heae, pa6 = p 

Furthermore, we take 

.*afi=@~Qhe, qa= - wNVgT, IIa = SQ ($g Pg - [oh Plb) (2.3) 

for the quantities T*@, qa, IP in 6w*. 
In the presence of the relationships (2.3), the linearized equations correspondingtothe 

function A, defined by (2.2) have the form 
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3. Isentropic waves in elastic polarizing media. In an electrostatic 
tion let us consider the class of models of elastic polarizing media for which the 
h, has the form 

.-._&= 2n =-i_p~Z~ + f(pl, Kc) + @he&& +5+&PC i- @E& 

(2.4) 

approxima- 
function 

(3.1) 

where P,^ are components of the polarization vector of the medium evaluated intheappropriate 
coordinate system, f is a given function of the arguments noted in (3.1) that governs the ani- 
so$opy energy, E is a given constant; the constant components of the tensors 

$ are given as a function of the form of symmetry of the medium. 
Kc,htBLe, qB, 

In linearized theory, the 
function -&defined by (3.1) is written in the form of (2.2) in which 

The parentheses ( )O here denotes that the function in the parentheses is evaluated in 
the initial state. Furthermore, we examine the case (corresponding to piezocersmic media, for 
instance) when the polarizing medium possesses axial symmetry, there are no external forces 

CQCl =: 0), and the function f and coefficients $"Bh,?$gaB,Gehe in A, and the coefficients S@,.pPN 
in (2.3) are defined by the relationships 

(3.3) 

in which na are components of the unit vector directed along the anisotropy axis, and r, T, r, 
h", a are constants. Assuming the vector of constant polarization of the medium directed 
along the anisotropy axis Pea = Pona, we find for the coefficients 6a6k pap haase Ca ~6 , , , , 

/3@ = fllW+ ~.@d, cafih = &n%W-f- f&Y%h +~.+Sbza+ @awns (3.4) 
Q”B= [as + PO&“+ 25,') + p~~(fh” + L")ln%fi -t (al + PoS~')6~fl. Ca= BagPoa 

hame = hlww + ha (g+w + tww) + k,ti%zW + 
ha (gakfd + @ihad) + h6WnW + hs (6@7+7+3 + PenW) -5 h,nanW72e 
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The coefficients h, 5, p in (3.4) are related to the coefficients 
the equalities 

h", 5", $ in (3.3) by 

54 = 5;s @1”+ BzO) PO, Al= h”, b= hzO, h, = is”- &“@I”+ Bz”) 

Aa = b0 + PC&So, A5 = X3” + PO (2g” + POBI”) Ll= ha” + PO5203 il, = ?Q” + Pa (251” + P&O) 

The condition of no stresses in the initial state (Q"B = 0)is satisfied if the coeffic- 
ients al, a2 in (3.3) are defined by the equations 

al + R&2'= 0, 02 + Po(<," + Go) + Poa(B1" + &")= 0 (3.6) 

Let us note that the components of the tensor kafih in A, governing the piezoelectrical 
energy are not symmetric in the superscripts a, p in the general case, hence, the equation for 
the polarization in (2.4) relates the components of the electrical field intensity vector ea 
to not only the strain tensor components eao = lip(~ao t- up,) (as in ordinary linear theories) 
but also the components of the rotation vector of the strain axes Q, = 1/2rotau. In the same 
way, the elastic energy l/&@h@u,pu~O depends on both &a~ and on Q2,. 

Assuming the relationships (2.3), (3.1)- (3.7) satisfied, let us examine the solution of 
equations (2.4) in the form of plane isentropic waves 

pa = pea esp i (k>.zh - at), u” = uoa exp i (k& - at) , ea = eo” exp i (k;*z” - wt) 

were kh are the wave vector components, IJI is the wave frequency, and pea, ~~a,e,,~ are constant 
amplitudes. We first examine the case when kh = km. From the Maxwell equations,theequations 
for the polarization, and from the momentum equations in (2.4) we find 

The coefficients q, 6 are defined as follows: 

6= kql (- & $- t P,wl) , b= - @I- ik (wt N (cl+ 52 i- 5.1 r 5,) 

A dispersion equation for the longitudinal (3.9) and transverse (3.10) waves folb..sfrom 

(3.7) 
(3.9) 

(3.10) 

If the axis x3 of the coordinate system is directed along the constant polarization vec- 
tor of the medium P,, then we have for the longitudinal wave described by 
equation (3.9) 

Ua = (0, 0, U), pa = (0, 0, p), P = (0, 0, 4np) 

The quantities U, p in (3.11) are connected by the relationship 

ik (<I+ 52 + t + &) 
p=--" 4x+B1+flu-ior,, 

For the transverse wave described by (3.10), we have 

p1 = 0, ea = 0, Ua = (U', U2, O), pa = (p', p2, 0) 

where 

the dispersion 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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In the case when the wave vector k is orthogonal to the constant polarization vector of 
the medium kana = 0, the dispersion equation for the longitudinal wave has the form 

(3.15) 

In the case when k,na = 0, the dispersion equations for the transverse waves are written 
as follows porn2 = h,ka (3.16) 

The relation between pa,ua in the case under consideration has the form 

(3.17) 

The dispersion equations (3.9), (3.101, (3.15), (3.16) are third order equations in the 
frequency o and of second order in the wave vector components kh in the general case (solved 
explicitly for k2). It is seen from (3.91, (3.101, (3.15) and (3.16) that the coefficient%l 
in the relaxation term IIa of the equation for the electrical polarization of the medium 

governs the transverse wave attenuation, while the coefficient t,, governs longitudinal wave 
attenuation. If relaxation of the electrical polarization is not taken into account na= 0 

(~1 = tl, = 0), then the dispersion equations (3.9), (3.101, (3.15), (3.16) define the customary 
elastic waves whose propagation velocity depends on the constant coefficients 5, fi in A,, 
governing the anisotropy energy and the piezoelectrical energy. Let us note that for 5t,=o 
(when the piezoelectrical energy is not taken into account), attenuation of the longitudinal 
waves considered also does not occur; attenuation of the transverse waves occurs even in the 
absence of the piezoelectric effect. 

All the dispersion equations obtained above have the form 

pod = ks (a - &c---j (3.18) 

where a, b, c, z are certain positive constant. In application to elastic polarizing media 
such dispersion equations were considered (for z = 0) in /l/, for instance. The equation 
(3.18) yields the complex value m = o 0 - iy for 0 in taking account of polarization relaxa- 
tion when z#O, where the decrement y governs the wave attenuation. From (3.18) we obtain 
that the decrement y is related to the wave vector as follows: 

(3.19) 

A graph of the function ry = f (zk) d f e ined according to (3.19) in the physicallyrealcase 
when b/a< c is a monotonically growing curve tangent to the axis rk at the point 0 and hav- 
ing the horizontal asymptote TY = bl2a. 

If the spatial inhomogeneity of the electrical polarization of the medium is taken into 
account (by inserting the term aaAVEP$.VcPAfi in (3.1) for Ii, 1 I then the dispersion equa- 
tions (3.9), (3.10), (3.15), (3.16) retain their form if the coefficient & therein is replac- 
ed by the coefficient PI* defined by fir* = fir + aakk&x. 

The author is grateful to L.I. Sedov for discussing the paper and for useful remarks. 
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